module documentation
ND interpolation for numpy arrays
Function | constant |
Set masked elements to a constant value |
Function | get |
Undocumented |
Function | interp |
Replaces masked elements with linear interpolation of surrounding values in place. |
Function | mean |
Replaces masked elements with mean of surrounding values in place. |
Type Variable | T |
Undocumented |
Variable | _lgr |
Undocumented |
def constant(a:
np.ndarray[S[N], T]
, m: np.ndarray[S[N], bool]
, value: T
= 0) -> np.ndarray[S[N], T]
:
¶
Set masked elements to a constant value
def mean(a:
np.ndarray[S[N], T]
, m: np.ndarray[S[N], bool]
, window: np.ndarray[Q[M], bool] | Q[M] | int
= 3, boundary: str
= 'reflect', const: T
= 0) -> np.ndarray[S[N], T]
:
¶
Replaces masked elements with mean of surrounding values in place.
Parameters | |
a:np.ndarray[ | np.ndarray[T] A numpy array of pixel data |
m:np.ndarray[ | np.ndarray[bool] A mask of the elements of a to replace |
window:np.ndarray[ | np.ndarray[bool] | tuple[int,...] | int
The surrounding values we should use in the mean calculation. NANs
and INFs will be ignored. If an np.ndarray[bool] will use the
True elements as memmbers of the calculation, if a tuple will create
a mask by using each element of the tuple as a manhattan distance
from the point whose mean is being calculated, if an integer will
use the same manhattan distance for each axis. |
boundary:str | str How boundaries are handled, one of ['pacman','const','reflect'] |
const:T | T Value |
Returns | |
np.ndarray[ | Undocumented |